第二十章 欧几里得算法 (第2/2页)
欧几里得说:“所以说,相当于没有最大公约数。”
在以上基础上,后来数学中发展了环的概念,整环R是符合一下接个要求的:
1、A 关于加法成为一个 Abel 群(其零元素记作 0);
2、乘法满足结合律:(a * b)* c = a *(b * c);
3、乘法对加法满足分配律:a *(b + c)= a * b + a * c,(a + b)* c = a * c + b * c;
如果环 A 还满足以下乘法交换律,则称为“交换环”:
4、乘法交换律:a * b = b * a。
如果交换环 A 还满足以下两条件,就称为“整环”(integral domain):
5、A 中存在非零的乘法单位元,即存在 A 中的一个元素,记作 1,满足:1 不等于 0,且对任意 a,有:e* a = a * e= a;
6、ab=0 => a=0 或 b=0。
而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。